據(jù)介紹,微生物電催化過程是電能細(xì)胞借助細(xì)胞充放電等與外界環(huán)境進(jìn)行雙向電子和能量交換過程,其在能源、環(huán)境、化工、軍事等領(lǐng)域具有廣泛應(yīng)用前景。這一過程可實現(xiàn)環(huán)境能源領(lǐng)域“變廢為寶”應(yīng)用,比如促使有機(jī)廢棄物降解和電能回收的微生物燃料電池、用于處理畜牧業(yè)、釀造業(yè)及食品加工業(yè)廢水制氫的微生物電解池、用于還原二氧化碳,合成高附加值精細(xì)化學(xué)品的微生物電合成等。
以電能細(xì)胞為主導(dǎo)的微生物電催化系統(tǒng)(微生物產(chǎn)電、微生物電合成、微生物非平衡電發(fā)酵等),作為一種新型綠色新能源生產(chǎn)方式正嶄露頭角。目前,細(xì)胞電子傳遞效率過低,成為限制電能細(xì)胞微生物產(chǎn)業(yè)化應(yīng)用的最大瓶頸。如何利用電能細(xì)胞高效率發(fā)電,成為科學(xué)家們迫不及待想要解決的難題。宋浩團(tuán)隊采用合成生物學(xué)模塊化工程改造細(xì)胞策略,對希瓦氏菌進(jìn)行了系統(tǒng)的代謝優(yōu)化與重構(gòu),改造了其遺傳基因。“我們發(fā)現(xiàn)電能細(xì)胞內(nèi)‘電子池’的容量大小是限制胞外電子傳遞速率的關(guān)鍵因素。”宋浩將細(xì)胞的電子載體NAD+比作細(xì)胞內(nèi)部“電池”,其容量大小直接影響細(xì)胞的產(chǎn)電效率。實驗還證明,通過提高胞內(nèi)電子載體NAD+總量,強(qiáng)化底物消耗速率,可顯著提升細(xì)胞電子傳遞速率,進(jìn)而可刺激電能細(xì)胞微生物更加高效地“投入工作”。